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Abstract. Graph embedding has attracted many research interests.
Existing works mainly focus on static homogeneous/heterogeneous net-
works or dynamic homogeneous networks. However, dynamic hetero-
geneous networks are more ubiquitous in reality, e.g. social network,
e-commerce network, citation network, etc. There is still a lack of research
on dynamic heterogeneous graph embedding. In this paper, we propose a
novel dynamic heterogeneous graph embedding method using hierarchical
attentions (DyHAN) that learns node embeddings leveraging both struc-
tural heterogeneity and temporal evolution. We evaluate our method on
three real-world datasets. The results show that DyHAN outperforms var-
ious state-of-the-art baselines in terms of link prediction task.
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1 Introduction

Graph (Network) embedding has attracted tremendous research interests. It
learns the projection of nodes in a network into a low-dimensional space by
encoding network structures or/and node properties. This technique has been
successfully applied to various domains, such as recommendation [11,18], node
classification [8], link prediction [1] and biology [7].

In real-world, graphs often not only evolve over time but also contain multi-
ple types of nodes and edges. For instance, e-commerce network has two types of
nodes, user and item, and multiple types of edges, click, buy, add-to-preference
and add-to-cart. The nodes and edges may change over time. In social network,
users may develop their multiple-type connections (follow, reply, retweet, etc)
with others over time. The dynamics of a network and the structural hetero-
geneity provide abundant information for encoding nodes.

Recent research mainly focuses on static graph embedding which has a fixed
set of nodes and edges. DeepWalk [9] and node2vec [6] leverage a random walk/
biased random walk and skip-gram model. LINE [12] preserves both first-order
and second-order proximities. GCN [8] uses convolutional operations on node’s
neighborhood. GraphSAGE [7] or PinSAGE [18] proposes an inductive method
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to aggregate structural information with node features. Further works consider
heterogeneity. metapath2vec [2] takes meta-path into account when generating
random walks. GATNE [1] aggregates node embedding by separating network
into different views according to edge types. HAN [16] uses two-level attentions
to learn the importance of neighbor nodes and meta-paths.

Dynamic graph embedding is an emerging area [17]. DynamicTriad [19] uses
triadic closure to improve node embeddings. DySAT [10] extends the original
GAT [15] to temporal graph snapshots. MetaDynaMix [4] proposes a metapath-
based technique for dynamic heterogeneous information network embedding.
More works may refer to [3,5,13].

Nonetheless, there is still a lack of research taking into account both tempo-
ral evolution and structural heterogeneity. Inspired by works on [16] and [10],
we propose a novel dynamic heterogeneous graph embedding approach using
hierarchical attention layers (DyHAN), which is able to capture the importance
in different level aggregations. To be specific, for an arbitrary node, node-level
attention intends to learn the importance of its neighbor for a specific edge
type. Edge-level attention aims to learn the importance of every edge-type for
this node. Temporal-level attention is able to fuse the final embedding by fig-
uring out the importance of each time step graph snapshot. We evaluate our
method on three real-world dynamic heterogeneous network datasets, EComm,
Twitter and Aliaba.com. The results show that DyHAN outperforms several
state-of-the-art baselines in link prediction task.

2 Problem Definition

In this section, we provide necessary information throughout this paper. We
consider a dynamic heterogeneous network is defined as a series of snapshots,
{G1, G2, ..., GT }. A snapshot at time t is defined as Gt = (Vt, Et,Wt), where Vt

is the node set with node type o ∈ O. Et is the edge set with edge type r ∈ R.
O and R are node type set and edge type set respectively, and |O| + |R| > 2.
We assume for each time snapshot the nodes and links both can be changed.

Dynamic heterogeneous graph embedding aims to learn a mapping function
f : V → R

d, such that it preserves the structural similarity among nodes and
their temporal tendencies in developing link relationships.

3 Proposed Method

In this section, we introduce our proposed approach DyHAN employing hierar-
chical attentions on dynamic heterogeneous graph embedding which combines
the basic ideas proposed in [10,16]. It has three main components, node-level
attention, edge-level attention and temporal-level attention. All of these three
components aggregate different layer of information using different attention
layers. The overall architecture of DyHAN is represented by Fig. 1.
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Fig. 1. Architecture of DyHAN.

Node-Level Attention. For each time step snapshot, we separate it into differ-
ent subgraphs according to edge types. A self-attention is employed to aggregate
node embedding for each subgraph. The importance of node pair (i, j) for edge
type r and time step t can be expressed by,

αrt
ij =

exp(σ(a�
r [Wr

nlxi||Wr
nlxj ]))∑

k∈Nrt
i

exp(σ(a�
r [Wr

nlxi||Wr
nlxk]))

, (1)

where σ is an activation function, xi is the input representation of node i, Wr
nl

is a linear transformation matrix, || denotes the concatenation. Nrt
i denotes the

sampled neighbor nodes for node i for edge type r and time step t. Different
from [15] which uses all immediate neighbors, instead, for the sake of induction,
we follow the framework described in [7] to use the sampled neighbors. ar is a
weight vector that parameterizes the attention function for edge type r. Then
the embedding of node i for edge type r and time step t is obtained as,

hrt
i = σ

⎛

⎝
∑

j∈Nrt
i

αrt
ij · Wr

nlxj

⎞

⎠ . (2)

Note that the parameters are shared among different time step snapshots.

Edge-Level Attention. We assume the edge-specific node embedding
expresses one semantic type of information in a heterogeneous graph. To aggre-
gate these information more efficiently and robustly, we employ an attention
layer to learn the importance of different edge types automatically. The impor-
tance of each edge type is calculated by an one-layer MLP.

βrt
i =

exp(q� · σ(Welhrt
i + bel))

∑R
l=1 exp(q� · σ(Welhlt

i + bel))
(3)

where σ is an activation function, q� is the edge-level attention vector. Wel

and bel are the one-layer MLP’s parameters. All parameters are shared across
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different time steps and different edge types. Then the fused embedding of node
i is,

ht
i =

R∑

r=1

βrt
i · hrt

i . (4)

Temporal-Level Attention. Once obtained the node embeddings for each
time step snapshot, the next is to aggregate these node embeddings across a
series of time snapshots. To compute the final node embedding, we use hT

i to
attend over all its historically-temporal representations, {h1

i ,h
2
i , ...,h

T−1
i }. The

Scaled Dot-Product Attention [14] is used by assuming that it is able to capture
temporal evolution characteristics. We pack the representation of node i across
time as Hi ∈ R

T×D. Then, Hi is transformed into queries Q = HiWq, keys
K = HiWk and values V = HiWv, where Wq ∈ R

D×D′
, Wk ∈ R

D×D′
and

Wv ∈ R
D×D′

. The temporal attention is defined as,

Zi = softmax(
QK�
√

D′ + M) · V, (5)

where M ∈ R
T×T is a mask matrix so that hi only attends over time steps ≤ t.

Mij =
{

0 if i ≤ j,
−∞, otherwise (6)

We will use the zTi as the final node embedding. Note that multi-head attention
could be applied to node-level and temporal-level attentions.

Optimization. In order to train the model capturing both structural and tem-
poral information, we encourage nearby nodes at the last time step to have
similar representations. A cross entropy loss is employed,

L(zTu ) = − log(σ(< zTu , zTv >)) − Q · Evn∼Pn(v) log(σ(< −zTu , zTvn
>)) (7)

where σ is the sigmoid function and <,> denotes the inner product. v is the
node that co-occurs near u on fixed-length random walk in the last time step.
Pn is a negative sampling distribution, here we use the node’s degree in the last
time step. Q defines the number of negative samples.

4 Experiments

Datasets. We use three real-world datasets for evaluation. The statistics of
them are summarized in Table 1.

EComm1 dataset is sampled from the dataset of CIKM 2019 EComm AI
contest from a category. There are two types of nodes, user and item. It has four
types of edges including click, collect, add-to-cart and buy.

1 https://tianchi.aliyun.com/competition/entrance/231719/introduction.

https://tianchi.aliyun.com/competition/entrance/231719/introduction
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Twitter2 dataset is sampled from the user behavior logs in Twitter about the
discovery of elusive Higgs boson between 1st and 7th July 2012. There are three
types of edges: retweet, reply and mention. Note that there is only one type of node.

Alibaba.com dataset is sampled from the user behavior logs in the
alibaba.com e-commerce platform. A network from customer electronics cate-
gory between 11th July and 21st July 2019 is sampled. It consists of interactions
between users and items. There are three types of interactions, click, enquiry
and contact.

Table 1. Statistics of datasets.

Dataset # nodes # edges # node types # edge types # time steps

EComm 37724 91033 2 4 11

Twitter 100000 63410 1 3 7

Alibaba.com 16620 93956 2 3 11

Experimental Setup. We learn node embeddings based on graph snapshots
{G1, G2, ..., Gt}, then a link prediction experiment is conducted on the last graph
snapshot Gt+1.

A link prediction task aims to predict whether there is an existing link
between any two nodes. We follow the evaluation framework for link predic-
tion as stated in [10,19]. We create a Logistic Regression classifier for dynamic
link predictions. We sample 20% of edges from the last time step snapshot as
the held-out validation set for hyper-parameter tuning. The rest of edges of the
last time step snapshot are used for link prediction task. In specific, we choose
randomly 25% of links and the remaining 75% of links as training and test set
respectively. An equal number of randomly sampled pairs of nodes without link
as negative examples for each training and test set respectively. We use the inner
product of the node embeddings of the node-pair as the representation feature
of the link. Then Area Under the ROC Curve (AUC) [9] score and accuracy are
used to report the performance.

Baselines. Considering availability of code and the effort of reimplementation,
we compare our proposed DyHAN with following state-of-the-art static/dynamic
and homogeneous/heterogeneous graph embedding algorithms. DeepWalk [9], we
use the implementation provided by [7]. Metapath2Vec [2], the original imple-
mentation provided by the authors are dedicated to specific dataset. As a result,
it is not convenient to directly generalize to other datasets. We reimplemented
it in python. GAT [15], the original implementation provided by the authors
is designed for node classification. We reimplemented it in the GraphSAGE
framework. Note that the nodes to be attended over are sampled from imme-
diate neighbors. GraphSAGE [7], we use the implementation provided by the

2 http://snap.stanford.edu/data/higgs-twitter.html.

http://alibaba.com
http://snap.stanford.edu/data/higgs-twitter.html
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authors and use the default settings. Four variants with different node aggre-
gation techniques are tested, namely, mean, mean-pooling, max-pooling and
LSTM. DynamicTriads [19] and DySAT [10], we use the implementation pro-
vided by the authors. A method named DyGAT which ignores the structural het-
erogeneity was also implemented for comparison of incorporating heterogeneity.
For random-walk based methods, we set the number of walks for each node as
50 and the length of each walk is set to 5. All training epoch is set to 1. All node
embedding dimension is set to 32.

Results. The experimental results are shown by Table 2. DyHAN achieves
the highest AUC score and accuracy among competitors. To be more specific,
DyHAN obtains gains of 2.8%–4.9% on AUC and gains of 0.7%–7.8% on accu-
racy comparing the best baseline (exluding DyGAT). The gains of DyGAT over
GAT show the efficacy of incorporating temporal information. Furthermore, the
gains of DyHAN over DyGAT shows the efficacy of considering heterogeneity.

Table 2. Experimental results on three real-world datasets.

Method EComm Twitter Alibaba.com

ROC-AUC Accuracy ROC-AUC Accuracy ROC-AUC Accuracy

DeepWalk 0.573 0.554 0.571 0.661 0.558 0.538

Metapath2Vec 0.613 0.574 0.571a 0.661a 0.577 0.570

GraphSAGE-mean 0.640 0.602 0.557 0.640 0.549 0.533

GraphSAGE-meanpool 0.584 0.554 0.574 0.661 0.571 0.547

GraphSAGE-maxpool 0.638 0.606 0.559 0.622 0.568 0.551

GraphSAGE-LSTM 0.579 0.551 0.564 0.635 0.563 0.542

GAT 0.656 0.601 0.580 0.634 0.557 0.533

DynamicTriad 0.595 0.567 0.641 0.661 0.571 0.524

DySAT 0.504 0.496 0.652 0.661 0.523 0.527

DyGAT 0.680 0.638 0.645 0.633 0.569 0.539

DyHAN 0.688 0.653 0.659 0.672 0.601 0.574
aNote that Metapath2Vec is same as DeepWalk when the number of node type is one.

5 Conclusions

In this paper, we have proposed a novel hierarchical attention neural networks
named DyHAN to learn node embeddings in dynamic heterogeneous graphs.
DyHAN is able to effectively capture both structural heterogeneity and temporal
evolution. Experimental results on three real-world datasets show that DyHAN
outperforms several state-of-the-art techniques. One interesting future direction
is exploring more temporal aggregation techniques.

http://alibaba.com
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